Savoir sans Frontieres

alih bahasa MEILIANA BIG BANG

JEAN-PIERRE PETIT

ASAL MULA SEGALANYA

4

Itu karena kita berdiri di permukaan karpet sebelah atas.
Jika kita berdiri terbalik di sebelah bawah, yang menggunduk itu akan menjadi ceruk dan yang ceruk menjadi gundukan.

10

Eh coba lihat sebentar...! Itu, jika gundukan dan ceruk bertumbukan secara perlahan maka yang timbul adalah dua gundukan berjalan. Ini proses terbalik!

Hmm...
itu PEMUSNAHAN partikel dan antipartikel materi. Jika itu terjadi, akan muncul dua foton

(*) Episto: ilmu; pam: satpam \longrightarrow epistopam: satpam ilmu

MAKiN KECiL MAKiN BERAT

Untuk gundukan berjalan yang anda sebut FOTON itu, okelah. Tapi apa yang membedakan gundukan yang tinggi mengerucut dengan yang pendek melebar?

Besar gundukan atau ceruk ini bisa kusebut PANJANG GELOMBANG COMPTON λc yang BERBANDING TERBALIK dengan MASSA m. Jadi, Massa m sama dengan 1/hc.

Foton-foton yang berkandungan energi besar, dengan panjang gelombang pendek, akan menghasilkan partikel-partikel (dan antipartikel) yang menjulang tinggi, ramping, dengan massa m besar

foton-foton bergelombang panjang λ besar

Foton-foton bergelombang panjang besar \rightarrow partikel-partikel bergelombang Compton besar. Sebaliknya, foton-foton yang kandungan energinya relatifkecil akan menghasilkan pasangan partikel-antipartikel berpanjang gelombang besar, bermassa kecil: λc besar, m kecil

(*) Ingat bahwa E (energi) $=m$ (massa). Lihat di album SEGALANYA RELATIF

PROTON dan NEUTRON memiliki massa yang hampir sama. Oleh karenanya ukurannya pun hampir sama. Tetapi elektron jauh lebih ringan. Secara logika, seharusnya elektron lebih besar, bukan?!

Tepat sekali. PROTON dan NEUTRON berbobot $1.66 \times 10^{-27} \mathrm{~kg}$. Elektron berbobot $9.1 \times 10^{-31} \mathrm{~kg}$. Jadi bobotnya 1850 kali lebih ringan, dan ukurannya 1850 kali «lebih besar»

16

17

TEMPERATUR RADiASi T_{r}

18

Semua partikel MATERI atau zat memiliki massa M dan kecepatan V yang berbeda-beda. Besaran ENERGI KINETIK sebuah partikel materi adalah $1 / 2 \mathrm{MV}^{2}$. Bertolak dari sini aku bisa menentukan besaran rerata lontaran energi (THERMAL) dari semua partikel materi

Dan yang dipakai mengukur BESARAN RERATA LONTARAN
ENERGI THERMAL ini adalah suhu zat atau TEMPERATUR MATERI Tm.

TERMODINAMIKA

TEMPERATUR ambang

Untuk melahirkan SEPASANG partikel-antipartikel, dengan massa kolektif m, diperlukan 2 energi mc², yang berasal dari sepasang foton berenergi lebih besar atau sama

Jika rerata energi foton lebih kecil
daripada energi awal $m c^{2}$, artinya temperatur radiasi $T R$ terlalu rendah (di bawah temperatur ambang), maka partikel-partikel materi tak mungkin lahir

EVOLUSi SPESiES

Berapa temperatur saat ini?

Astaga, suhunya dua puluh ribu milyar derajat $\left(2 \times 10^{23} \mathrm{~K}\right)$

Di album SEGALANYA RELATIF, kita ketahui bahwa jika kecepatan suatu partikel mendekati kecepatan cahaya, maka aliran WAKTU AKTUAL-nya jadi merambat bagai siput

22

PARTiKEL-PARTiKEL ELEMENTER

Eh, daripada berpangku tangan begitu, lebih baik bantu aku mengelompokkan PARTIKEL-PARTIKEL ELEMENTER yang tidak beraturan ini.

Tapi bermassa amat besar. Partikel ini bernama HYPERON (*)

Selanjutnya adalah HADRON. Anggotanya termasuk PROTON dan NEUTRON (berikut antiproton dan antineutron). Kedua partikel ini bergabung membentuk INTI. Untuk melahirkan partikel ini, harus ada suhu radiasi lebih dari $10^{13} \mathrm{~K}$, atau sepuluh trilyun derajat

SERUA BERANJAK mening galkan tempat

Ini situasi kronogen paling menakutkan (waktu siap beranjak). Kronotron mulai bergerak, dan inilah KEJADIAN pertama, DETIK ke satu.

26

KONSERVASi MASSA

18

${ }^{(*)}$ dari isitilah kosmos: alam semesta dan topos : tempat;
--> tempat alam semesta berada.

Inilah gambaran rinci tentang pemelaran foton dan energi yang hilang karena itu

Alam semesta mensekresi ruang seperti hewan yang membangun cangkangnya. Seiring berlalunya waktu, semakin panjang rentang ruang yang harus dilalui partikel. Ketika ruang membesar dua kali lipat, kecepałan gerak partikel materi pun turun separuhnya. Dengan demikian, energi kinetiknya terbagi 4: perubahan kecepatan gerak berbanding terbalik dengan jari-jari R semesta, sedangkan perubahan temperatur $T m$ sama dengan $1 / R^{2}$

Tapi baru saja kita lihat bahwa temperatur radiasi $T R$ berubah sebesar 1/R. Berarti zat atau materi cenderung lebih cepat menjadi dingin?

30

Memang betul. Tapi tumbukan foton-zat akan membuat suhunya naik lagi. Karena tumbukan terjadi berulangkali maka zat mampu mempertahankan kesetimbangan termodinamika ($T R=T m$), selama kurun waktu tertentu.

Enam milyar derajat, kau dengar itu?

Ini yang aneh: temperatur mereka 100 milyar derajat, tapi proton, neutron, beserta antipartikelnya, bergerak dengan kecepatan sepersepuluh kali kecepatan cahaya. Padahal elektron selalu relatif.

32

Untuk sementara yang bisa bertahan tinggal... foton. Syukurlah...

Salah satu misteri kosmologi terbesar yang belum terjawab ialah mengapa materi dan antimateri tidak saling membinasakan

Ceritanya selalu sama... pertanyaan tentang ANTIMATERI tiba-tiba hilang dari peredaran Pffft! Antimateri... hilang!!

Tiresias, ingat Konvensi kita. Hanya boleh mengungkap FAKTA! Dilarang menyampaikan spekulasi (*)
(*) akan terbit album khusus yang membahas pikiran-pikiran spekulatif
"KARNAVAL ILMU PENGETAHHUAN : Antologi gagasan-gagasan jauh ke depan".

ERA RADIASi

Sekarang tak ada hal istimewa lagi di semesta ini selain cahaya

ENERGI-ZAT atau materi, yang semula terbagi rata
dalam bentuk zat, antizat, foton, dan neutrino, kini nyaris hanya berbentuk foton dan neutrino, atau radiasi. Setiap kali jari-jari atau radius semesta R bertambah, kerapatan materi akan berkurang. Ini melulu soal dilusi...

Selama zat atau materi tetap berpasangan dengan foton, maka materi akan selalu dipanasi. Itu berlangsung hingga suhu keduanya ($T R=T \mathrm{~m}$) turun ke 3000 derajat, atau selama kurun waktu 700.000 tahun.

NUKLEOSiNTESiS

Nah...jika dibandingkan dengan keadaan di halaman 31, pada seperseratus detik pertama, jari-jari R semesta meningkat seratus kali lipat, dan suhu ($T R=T m$) menurun tajam hingga satu milyar derajat.

Dan tak ada lagi yang tersisa. Seterusnya bagaimana...?

Ada dua daya yang akan beraksi, daya tarik: pada magnet, serta daya tolak: elastisitas pada karet busa ketika difekan. Begitu bola-bola bersinggungan, daya elastis beraksi. Kekuatan daya magnetis bisa beraksi jika tekanan pada karet busa cukup kencang. Dengan demikian ada posisi tertentu atau titik konfigurasi yang tepat agar kedua daya ini bisa berimbang

Karet busa membuat kerapatan bola
 setara dengan kerapatan air. Kini air akan Kupanaskan agar timbul lontaran gerak ...

Apabila suhu panasnya terlalu rendah, bola-bola hanya saling terpental pelan, dan tak ada akibatnya apa-apa. Saat terjadi tumbukan pelan, besaran energi yang dilepas tidak cukup kuat untuk menekan karet busa agar memungkinkan daya elektromagnetis bekerja.
Padahal daya ini hanya efektif pada jarak pendek

40

Anselmo membiarkan air mendingin kembali. TURBULENSI mereda. Untuk beberapa saat, beberapa bola masih menyatu dengan pasangannya. Namun Ketika suhu semakin turun, NUKLEOSINTESIS pun terhenti.

Sekarang tak ada lagi yang bisa dilakukan. suhu terlalu dingin. Bola-bola terlalu lemah agitasinya untuk bisa menyatu dengan pasangan masing-masing

Kita berada di bawah temperatur AMBANG

Hal yang sama terjadi kala temperatur semesta turun di bawah satu milyar derajat, atau pada rentang waktu beberapa MENIT.

Setelah itu akan terbentuk struktur-struktur beranggota dua, tiga, atau empat «bola».

Dan temperatur pun turun hingga 3000 derajat Kelvin

SEMESTA TEMBUS PANDANG

Mekanisme MORFOGENETIK yang lain lagi mulai turut berperan. Daya elektris cenderung mengikat elektron ke intinya untuk membentuk atom. Agitasi thermal menurun cukup rendah sehingga struktur-struktur yang baru terbentuk tidak langsung buyar saat bertumbukan dengan atom atau komponen lain yang ada di situ

Sebelum ini, foton-foton terus berinteraksi dengan materi. Tapi, tak ada satu foton pun yang sanggup menerobos kerumunan materi di sekitarnya.

44

DEKOPULASi

Kini semuanya berakhir, para foton bisa mengembara ke seluruh penjuru semesta tanpa menghiraukan keberadaan materi: itulah yang disebut DEKOPULASI. Ada dua alasan untuk itu: pertama, ruang alam semesta semakin terbuka lebar; kedua, foton tak kerap lagi berinteraksi dengan materi netral (atom).

Tapi kawan, teleskop selalu mengirim citra yang terkadang seperti «liputan langsung dari zaman purba...», betul Kan?

Ketika materi dan foton berhenti berinteraksi dan tak lagi bertukar energi, KESETIMBANGAN TERMODINAMIKA pun BUYAR. Temperatur materi TM furun lebih cepat (berbanding terbalik dengan kuadrat jari-jari R semesta) dibanding temperatur foton, atau temperatur radiasi T_{R}, yang hanya berbanding terbalik dengan jari-jari R semesta.

Eh, apa yang terjadi?
Seperti malam melanda tiba-tiba? Kenapa mendadak dingin sekali..?

Semesta memasuki masa senja kala. Dingin terus berlangsung. Langit ungu berubah merah tua, malam pun tiba bagai selimut beku. Masih ada satu milyar foton asli bagi setiap atom helium atau hidrogen. Tapi foton-foton ini, setelah menempuh perjalanan ekspansi yang begitu panjang, menderita semacam penyakit lesu darah.

BIG BANG itu telah berakhir. Untuk sementara, tak ada yang tersisa (satu diantara semilyar partikel!). Semuanya gelap gulita seperti berada dalam terowongan
46

48

Untuk menjawab pertanyaan Leo, mari kita tinggalkan alam karpet ini dan kembali ke masa kini.

EFEK DOPPLER

50

Ah, baiklah! Dan aku bisa mengukur panjang gelombang yang diterima

52

54

Saat troli mendekat, maju ke arah gulungan pita, lengkung kurvanya jadi menyempit dan frekuensinya membesar.

Baiklah, mari kita ulangi lagi eksperimen tentang transmisi tadi

Tunggu dulu, apa maksudnya itu? Apakah objek-objek mengalami percepatan ketika bergerak menjauhi kita?

58

Jadi, seluruh jagat raya kita berekspansi?

Misalkan gerak kembang-kempis atom, contohnya atom hidrogen, merupakan "denyut nadi" jagat raya. Bayangkan apa yang terjadi dengan jagat raya jika denyut nadinya mengalami percepatan. Semakin tua usia, semakin Kencang denyutnya. Kalau begitu, citra visual masa silam akan terlihat seperti filem gerak lambat. Dan efek Doppler tinggal ilusi belaka.

Tentu kita boleh berangan-angan tentang apa saja, Tiresias. Apa yang kau sampaikan itu sama dengan mengatakan bahwa hukum fisika berubah seiring dengan waktu, persis seperti pernyataan Fred Hoyle.

DASAR LANGiT iTU DiNGiN

Tadi sudah kita saksikan bahwa hanya satu di antara semilyar foton yang bisa bertransformasi menjadi zat atau materi.

Jadi setidaknya masih tersisa banyak sekali foton purba, sekitar 500 per cm kubik (sama banyaknya dengan neutrino yang lebih sulit dilacak)

Panjang gelombang foton-foton itu diperkirakan 5 mm , sebanding dengan temperatur radiasi T_{R} sebesar 3 derajat absolut $\left(-270^{\circ} \mathrm{C}\right)$.

Foton-foton yang energinya amat kecil ini terlacak oleh Penzias dan Wilson pada tahun 1964. Itulah percikan nyata debu BIG BANG, sebagai bukti kongkrit pergelaran mahakarya sendratari Kosmik.

60

CAKRAWALA KOSMOLOGi

Fenomena perpindahan pasti ada kaitannya dengan WAKTU (*). Objek yang berpindah dengan kecepatan mendekati kecepatan cahaya, $300.000 \mathrm{~km} /$ dtk, beredar pada " gelembung waktu » yang berbeda dengan kita sebagai pengamat. Kita menginderai pesan yang mereka pancarkan persis seperti melihat filem dalam gerak lambat

Dan jika objek yang berelasi dengan kita itu bergerak secepat kecepatan cahaya, maka gelembung waktunya akan bersinggungan total dengan gelembung waktu kita. Aliran wakłu pun jadi seolah diam bak genangan air

Karena ada penumpukan, atau persinggungan relatif dua aliran waktu, maka frekuensi gelombang saat penerimaan jadi turun. Dan inilah yang dikenal dengan efek relativistik, suatu fenomena tambahan di samping efek Doppler.
Apabila kecepatan bertolak si pengirim sinyal, dalam relasinya dengan kita, mencapai C, maka frekuensi gelombang pasti anjlok ke titik nol. Akibatnya pupuslah energi, pupus pula gelombang sekaligus pesan atau sinyalnya.

Gelombang berfrekuensi nol,

 sama dengan gelombang nihil!(*) Lihat album SEGALANYA RELATIF dari penulis yang sama

Untuk objek-objek di sekitar kita, kecepatan relatif setara dengan $300.000 \mathrm{~km} /$ dtk dicapai di garis semesta yang disebut CAKRAWALA. Ini bukan batas SEGALA SESUATU YANG ADA tetapi batas SEGALA SESUATU YANG BISA KITA KENALI. Semesta yang bisa dijangkau boleh jadi hanya sebagian kecil dari semesta raya yang maha luas.
Cakrawala ini terletak di kisaran sepuluh milyar tahun cahaya.
Daya tangkap teleskop bumi yang paling canggih saat ini, PALOMAR, berkisar satu milyar tahun cahaya.

Lalu, apa artinya jari-jari R semesta yang kita bicarakan tadi?

Kisahnya dimulai ketika semesta raya berusia seperseratus detik. Pada titik waktu itu kita bayangkan ada satu lingkaran, atau bulatan bola dengan jari-jari R, yang selanjutnya terus berekspansi seiring perjalanan waktu. Ya, begitulah...

Dengan begitu, kita tak punya praduga apakah alam semesta ini terbatas atau tak terbatas (*)

(*) Untuk topik ini, lihat album GEOMETRIKON dari penulis yang sama

MODEL SiMULASi FRiEDMANN

64

Anselmo memasang dua batang magnet di sepatu roda, dan keduanya saling tarik-menarik. Namun di tengah sepatu roda diletakkan sebuah pegas yang membuat keduanya saling bertolakan.

Kalian lihat, 'Kan, magnet-magnet ini ibarat gaya gravitasi yang atraktif dan kohesif, sedangkan pegas ibarat daya tekan keluar.

Hal itu memberi dua kemungkinan pada alam semesta:
Skenario pertama: ekspansi akan terus berlangsung sampai tak terhingga.
Saat bintang terakhir padam, kegelapan akan datang selamanya,
kebekuan absolut pun terjadi. Itulah KEMATIAN THERMAL.

Berdasarkan model Friedmann, semesta akan berekspansi sampai tak terhingga jika kerapatan zat (saat ini) kurang dari 5×10^{30} gram per cm kubik. Dengan demikian semesta akan memiliki volume atau ekstensi spasial yang tak terhingga.
(*) Menurut catatan asli dari Einstein

GEOMETRI ALAM SEMESTA,

 SATU SAJA ATAU BEBERAPA?Bagi kita, semesta alam merupakan bentang permukaan empat dimensi di mana ruang dan waktu saling bertautan. Gagasan-gagasan yang disajikan di halaman sebelumnya adalah beberapa cara pandang berbeda tentang ENTITAS ALAM SEMESTA sebagai satuan RUANG-WAKTU

Ingat bahwa jumlah dimensi ruang adalah besaran kuantita untuk menentukan posisi suatu titik

70

EPiLOG

 (pembentukan galaksi, bintang, dlsb...) di album SERIBU MATAHARI

DRAMA PERISTiMA KOSHIIK

WAKTU	SUHU	KERAPATAN	FENOMENA
PRAMASA...	$\mathrm{T} \geqslant 10^{12}$ derajat		6
1/1000 detik	300 milyar derajat		Sop campuran berbagai foton, neutrino, antineutrino (foton punya antipartikel sendiri), proton, antiproton, neutron, antineutron, serta elektron dan antielektron (positron)
1/100 detik	100 milyar derajat	4 milyar $\mathrm{gr} / \mathrm{cm}^{3}$	Pemusnahan hadron-hadron (proton, antiproton, neutron, antineutron). Yang mampu bertahan hanya satu per satu milyar. Sisanya akan dihancurkan oleh antipartikelnya sendiri dan menghasilkan proton-proton.
1/10 detik	30 milyar derajat		Tidak ada kejadian mencolok. Inti atom tak bisa terbentuk karena suhu terlalu panas.
1 detik	10 milyar derajat	380000 $\mathrm{gr} / \mathrm{cm}^{3}$	Neutrino « hidup mandiri» dan berhenti berinteraksi dengan zat.
13 detik	3 milyar derajat	盆	Elektron dan antielektron saling menghancurkan. Lagi-lagi yang tersisa hanya satu per satu milyar.
3 menit	1 milyar derajat		Nukleosintesis: pembentukan inti helium. Lenyapnya neutron bebas (masa hidup: 109 detik).
35 menit	300 juta derajat	$1 \mathrm{gr} / \mathrm{cm}^{3}$	Nukleosintesis selesai: terbentuk 25\% helium, 75\% hidrogen
700.000 tahun	3000 derajat		Setelah hampir semua zat dan antizat binasa, semesta alam memasuki «era radiatif » dimana energi-materi berada dalam radiasi. Saat suhu turun hingga 3000°, terbentuk atom-atom netral dan interaksi foton dengan materi terhenti; semesta alam pun berubah jadi "transparan".
100 juta tahun	$\begin{aligned} & T R=-173^{\circ} \mathrm{C} \\ & T M=-267^{\circ} \mathrm{C} \end{aligned}$		Tidak ada lagi pemanasan foton, atom-atom netral hidrogen dan helium mendingin amat cepat. Terbentuklah galaksi dan bintang-bintang pertama
5 milyar tahun			Pembentukan Bumi
10 milyar tahun	$\mathrm{TR}=-27^{\circ \circ} \mathrm{C}$ (3 derajat Kelvin)	$\begin{gathered} 10^{-30} \\ \mathrm{gr} / \mathrm{cm}^{3} \end{gathered}$	Pertumbuhan kehidupan
SEKARANG			Penemuan bom atom...

